

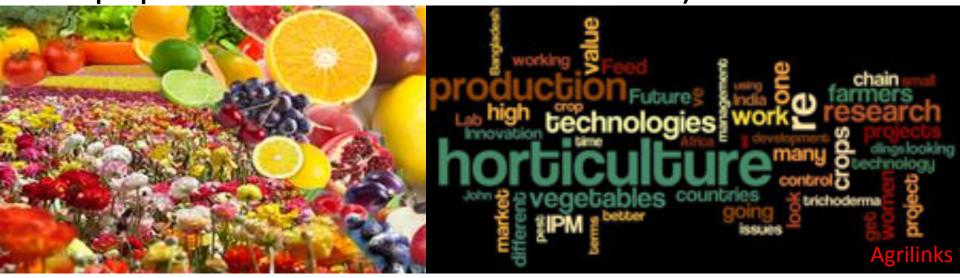
Il Simposio Nacional de Ingeniería Hortícola Automatización y TICs en agricultura

Almeria, 10-12 de febrero de 2016

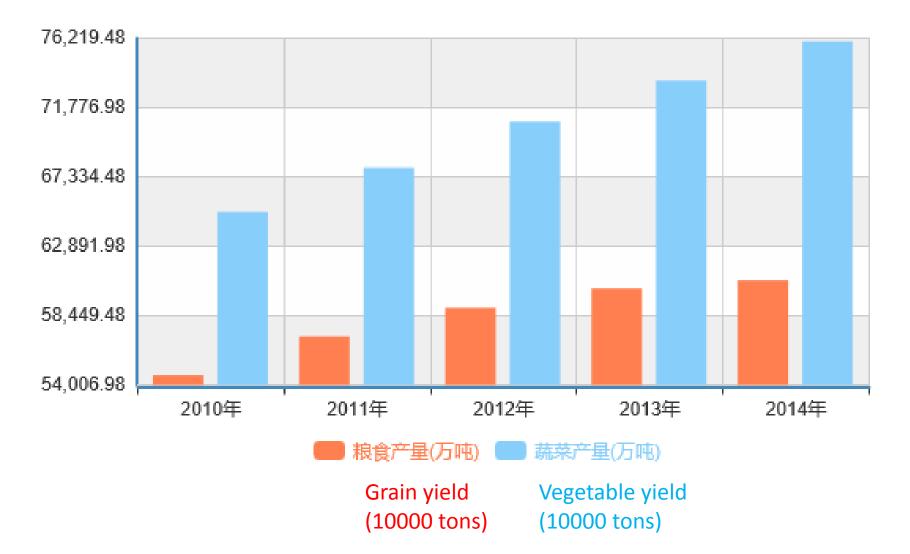
Ponencia la aplicación de las TICs en la agricultura China

Dr. Ming Li

China National Engineering Research Center for Information Technology in Agriculture (NERCITA) http://www.nercita.org.cn Email: lim@nercita.org.cn

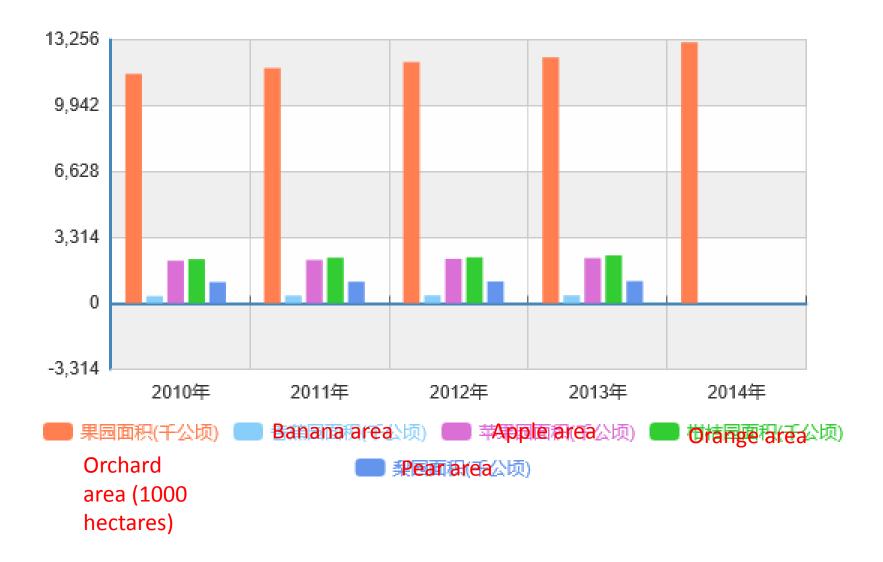

1 Introduction

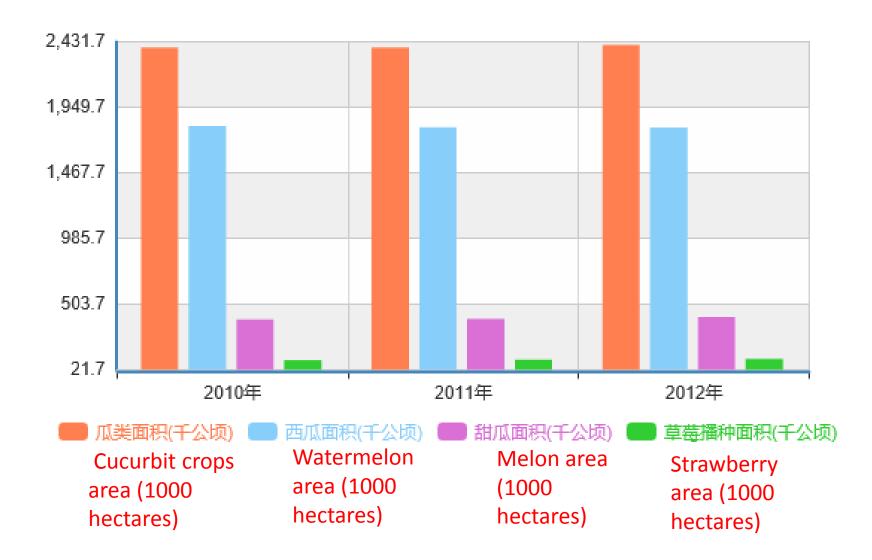
Agenda

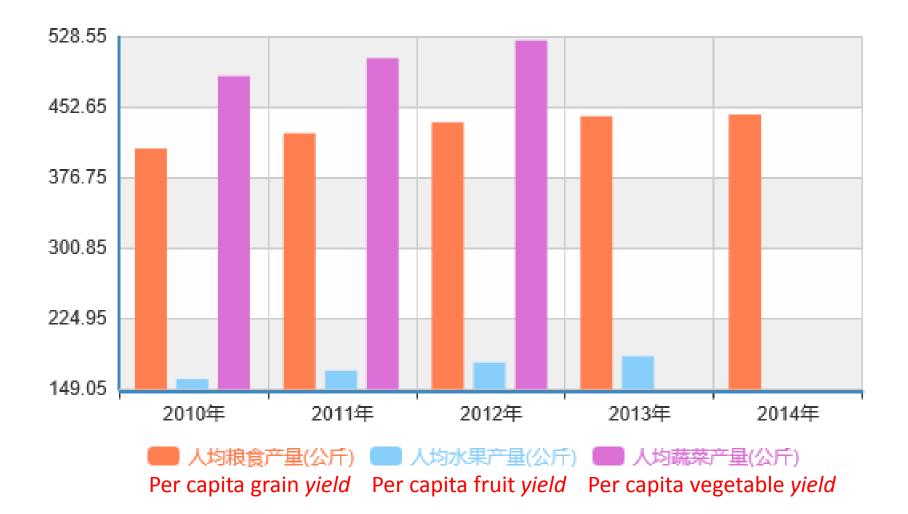

- 1 Introduction
- 2. Breeding
- 3. Production
- 4. Logistics and traceability
- 5. Application
- 6. Cooperation with Spain

Horticulture: rapid development

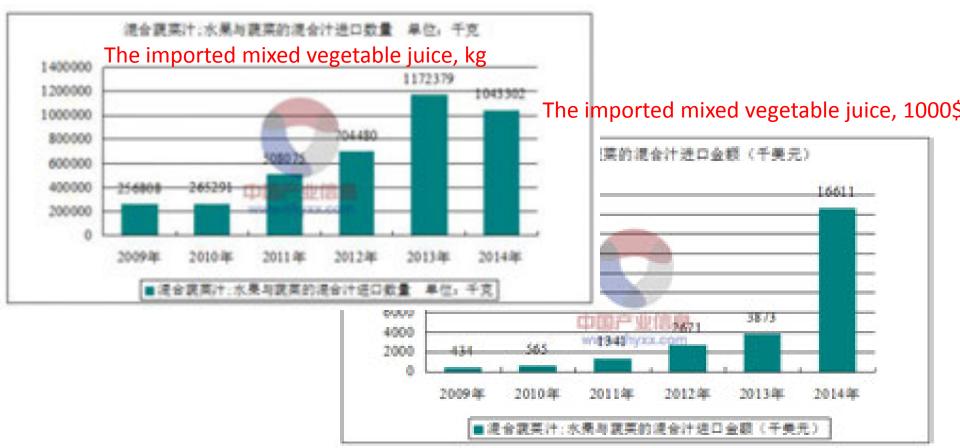
 The rapid rise of the middle class and rising per capita income in emerging economies are leading to increasing demand for healthy, safe and sustainably produced horticultural products. (China has about 300 million population with middle class level)


1.1 General view of China's horticulture


Horticultural yield in China


Orchard area

Cucurbit crop area



Per capital yield

Higher demand for imported food

• 2015, China imported more than 4 million tons of fruits

Global importers

Variety	Total (Tem)	Variety	Total (Tosa)
Longan	128,790.37	Kiwi	6,886.94
Banana	134,475.49	Citnus	6,758.78
Watermelon	72,423.74	Apple	2,513.74
Dragon Fruit	67,764.32	Pest	1,061.83
Gcape	36,508.95	Mango	639.27
Durian	17,307.64	Рарауа	307.09
Mangosteen	11,060.95	Leeche	0.05
Pineapple	6,921.40		

Data from China World Fruit & Vegetable Trade Fair,2015

S&T demand for horticulture

Freah, Foogen & Dehydrated Produce Products

Produce Packaging Machinery & Technology

Nuts & Processed Produce Products

After Harvest Machinery & Technology

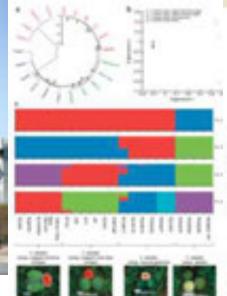
Juice, Deinks & Winery

Herbs & Spices

Organic & Healthy Food

Legistics & Cold Chain

Breeding & Seedling Technology


Marketing, Research, Consulting & Financial Solutions

2. Breeding

• Mining the variety resources

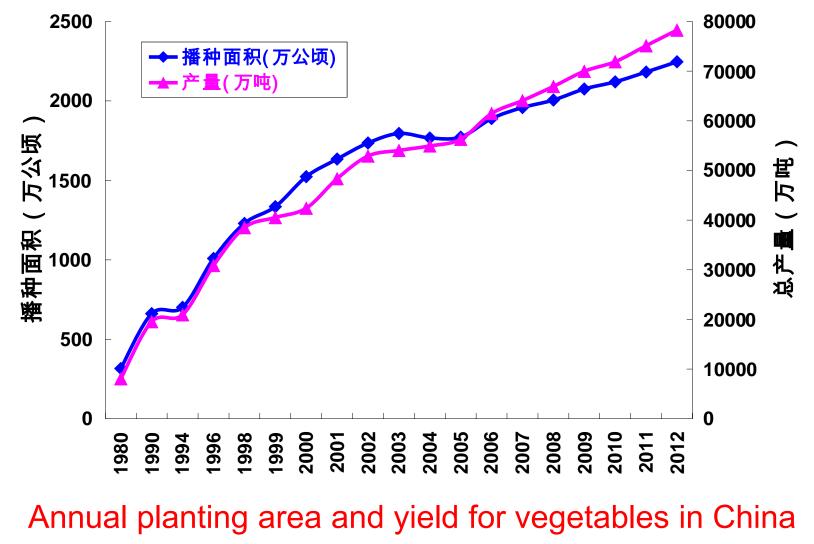
The dish generate of watermedous (Cittallas locatus) and tenergometing of 20 diverse accessions

(Contact of the local division of the local

2. Breeding

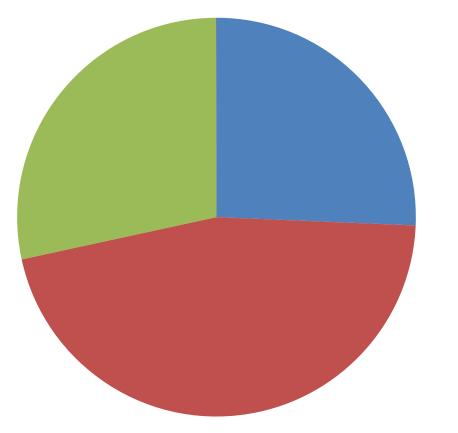
• Establish the variety resource standard

2. Breeding


Golden seed breeding platform

3. Production

- 3.1 Problem
- 3.2 Monitor
- 3.3 Model
- 3.4 Decision and conduction

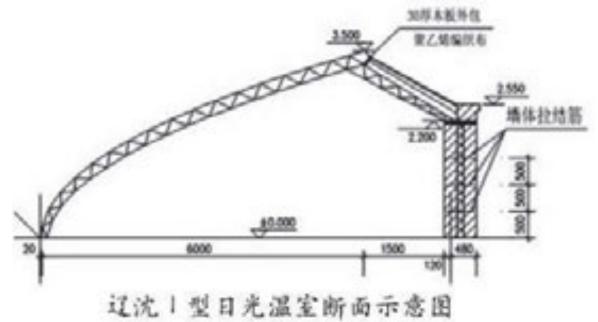

Fast increase of horticultural production in China

Li Baoju, 2013

3.1 Problem

China greenhouse Area(1000 ha)

Solar greenhouses 950


- Big (standard) plastic tunnels 1700
- Small plastic tunnels 1050
- Multi-span greenhouses
 1.3

Low cost, simple facilities in agriculture

Solar greenhouse creation

 1985, Farmers in Haicheng and Wafangdian, Liaoning province, China invented solar greenhouses to produce fruit vegetables, in the external weather of -20°C.

Solar greenhouse extension

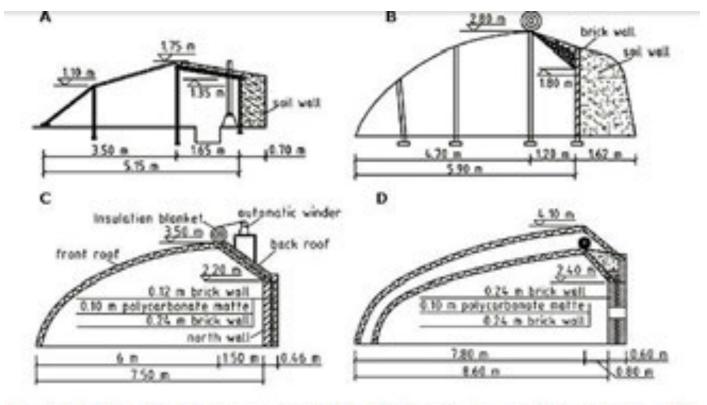


Fig. 1. Models, structure parameters, and evolution of solar greenhouse structure in China. (A) The primary solar greenhouse (before 1985): spans = 5.5 to 6.5 m, wall thickness = 0.5 to 0.7 m, arch height = 2.1 to 2.4 m; steel frames and two to three pillars inside the greenhouse, no insulating blanket, the roof is glass. (B) Modified solar greenhouse (1986-95): spans = 6.0 to 8.0 m, arch height = 3.0 to 4.0 m; frames are bamboo, steel, or a mixture of both, with two to three pillars inside; soil wall thickness = 0.8 to 1.1 m with heterogeneous double layer; transparent coverage materials polyethylene (PE) or polyvinyl chloride (PVC) with insulating blanket on it. (C) Modern solar greenhouse (1996-present): spans = 8.0 to 14.0 m, arch height = 3.8 to 5.5 m, walls of air-entrained brick, polystyrene slates, and perlite at 0.8 m; non-pillar, zinc-coated steel frame. The rolling up and down of the insulation blanket and ventilation vents are all automatic. The east and west walls have a wet curtain cooling system. (D) Double-arch solar greenhouse (2007-present): structure parameters are the same as (C) except the double-arch frames; Gao, et al, 2010 1 m = 3,2808 ft.

Fig. 2. Photos of a single-slope solar greenhouse: (A) exterior, (B) interior, (C) upper side of the double-arch solar greenhouse, and (D) a group of solar greenhouses. (Photos A through C were provided by M. Qu and Z. Zhang, respectively; photo D is courtesy of Beijing Agricultural Bureau).

Greenhouses in different latitudes

Table 1. The main structural parameters of the solar greenhouse located at different degrees of latitude (Zhang, 2001).

Latitude	Greenhouse types*	Span (m) ^y	Ridge ht (m)	Back wall ht (m)	Back roof horizontal shadow length (m)
43°N	1	7.0	3.5-3.8	2.3-2.5	1.5-1.6
	2	6.5	3.3-3.6	2.2-2.3	1.4-1.5
	3	6.0	3.0-3.4	2.0-2.2	1.3-1.4
41°N-42°N	1	7.5	3.6-3.9	2.3-2.6	1.5-1.6
	2	7.0	3.4-3.7	2.1-2.4	1.4-1.5
	3	6.5	3.2-3.5	2.0-2.3	1.3-1.4
38°N-40°N	1	8.0	3.7-4.0	2.4-2.6	1.4-1.5
	2	7.5	3.5-3.7	2.2-2.5	1.3-1.4
	3	7.0	3.3-3.5	2.2-2.5	1.2-1.3

"Greenhouse types are divided by the span and the ridge height.

1 m = 3.2808 ft.

Solar greenhouse cost and benefit

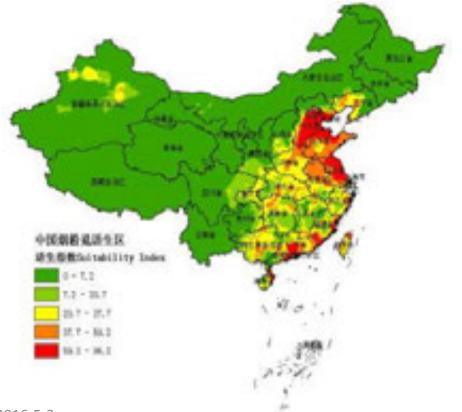
		Solar gree	enhouse		
		Modified	Modern zinc-coated steel frame	Gutter-connected heated greenhouse	
Projects		bamboo-steel frame		Polycarbonate matte	Glass greenhouse
Con	struction cost (yuan/m ²)*	40-60	150-200	650-750	850-950
Depreciated value	Duration (years)	5-10	15-20	20-30	20-30
	Value/year (yuan/m2)	4-12	7.5-13.3	21.7-37.5	28.3-47.5
	Annual production material input (yuan/m ²)	4.8	4.8	5.5	5.5
	Labor input (yuan/m2)	7.2	7.2	6.5	6.5
cost	Heating energy input (yuan/m2)"	0	0	89.6	89.6
	Wet-curtain cooling cost (yuan/m2)*	0	0	4.0	4.0
	Production cost (yuan/m2)	12	12	105.6	105.6
Vegetable productivity	Annual vegetable income (yuan/m2)*	45	45	60	60
	Net income (yuan/m2)	21-29	19.5-25.5	-67.3 to -83.1	-73.9 to -93.1
Ratio of annual input/output	Input:output	1:1.88	1:1.76	1:0.44	1:0.42

Table 2. Input and output of different styles of greenhouses for growing cucumber and tomato in Beijing, China.

"1 yuan/m2 = \$0.1465/m2 = \$0.0136/ft2.

"Heating cost was calculated by assuming that the gatter-connected greenhouse needs to be heated 100 d in winter, and needs burn 1.12 kg-m⁻² (0.229 lb/ft²) of coal per day att unit price of 0.80 yean/kg (\$0.1172/kg, \$0.0532/lb).

"Cooling cost was calculated by assuming that the gatter-connected greenhouse needs to be cooled 100 d in summer, and needs consume 0.4 kW m⁻¹ (0.037 kW/ft⁻¹) of electricity per day at unit price of 0.80 yaan/kW (\$0.1172/kW).


"Annual vegetable income was calculated by assuming vegetable price is 2.0 yuan/kg (\$0.2930/kg, \$0.1329/lb) and annual average yield of solar greenhouse and gutterconnected greenhouse in 3 years was 22.5 and 30.0 kg m⁻² (4.61 and 6.14 lb/ft²), respectively.

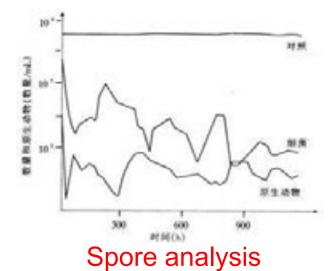
Some problems

- Lack of unified plan and strategy
- Less ability of environment control
- Heavy soil continuous cropping obstacles, and diseases and pests
- Lower efficiency of production

Diseases and insect pests are the major limitation for agricultural production

 The usual loss for horticultural crops is more than 20% due to pests, and the improper control may result in loss of 50-60 %, especially no harvest when the heavy situation occurs.

Traditional pathogen monitoring method



Collection by labor

Traditional pest monitoring method

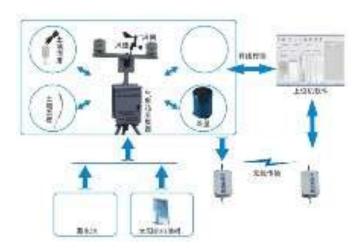
Field sample

Expert identify

On site testing

Statistic analysis

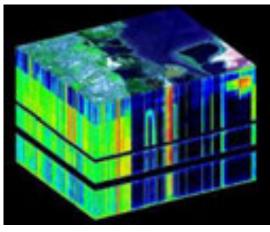
Lower efficiency of usage on data



Paper

Computer

PDA


Cell phone

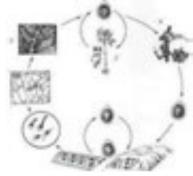
Weather station data has not been well used

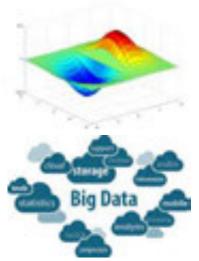
Urgent need of Intelligent, automatic tools

Hyper spectrum

Voice

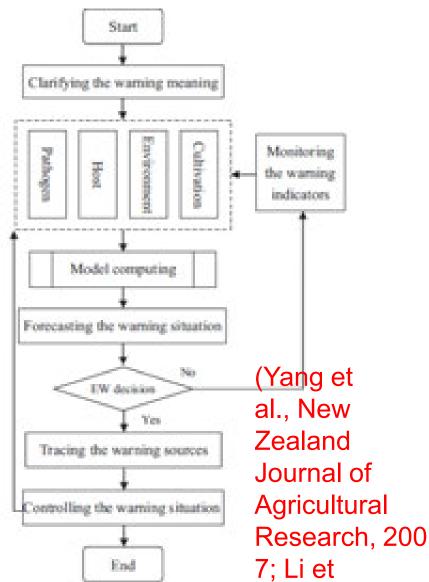
Infra red

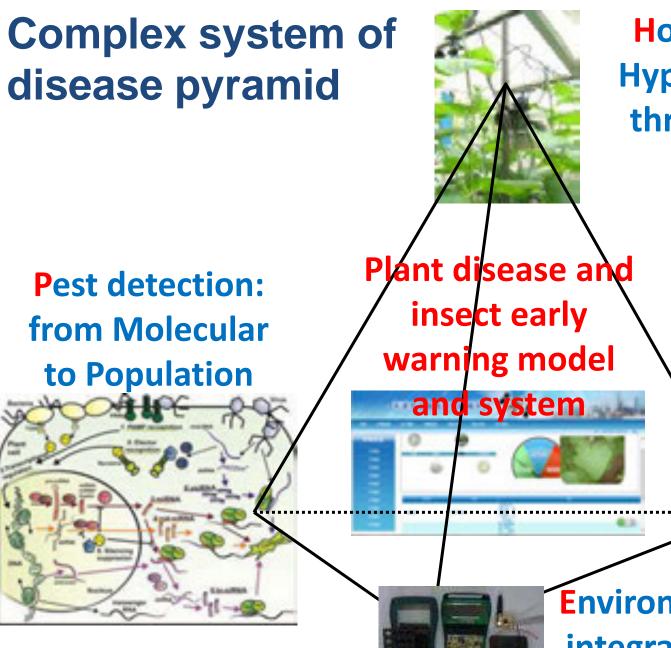



IOT, Cloud computing, big data has great potential

Trends in Plant Protection Science

- Thousands years ago: Experiment
 - Field survey
 - Express the natural phenomenon
- A hundred years before: Theory
 - Disease epidemiology and insect ecology
 - Mathematical Model
- Last several decades: Computing
 - ICT application
 - Computer simulation
- Nowadays: Big Data
 - Data-intensive scientific discovery
 - Global pest forecast and control



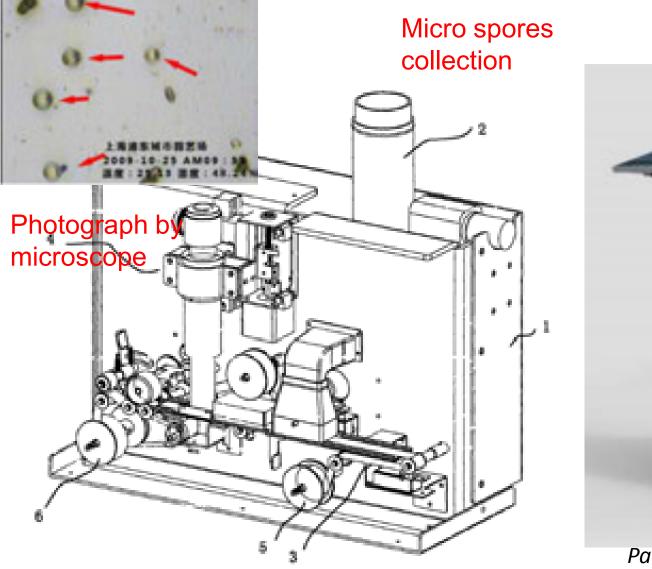

Our goal

- Automatic monitoring
- Precision model
- Decision and control

3.1 Monitoring the pest tetrahedron

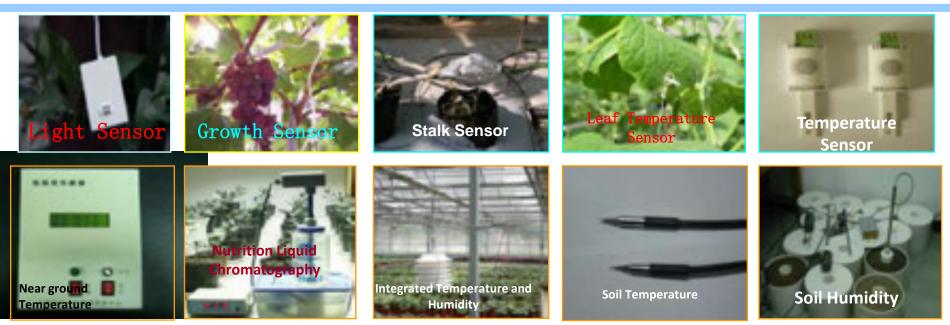


Host phenotyping: Hyperspectral, Highthroughput, online


> Cultivation record: holistic, traceable, visible

Environment monitoring: integrated, dynamic and heterogeneous

(1) Pest monitoring equipment in fruits

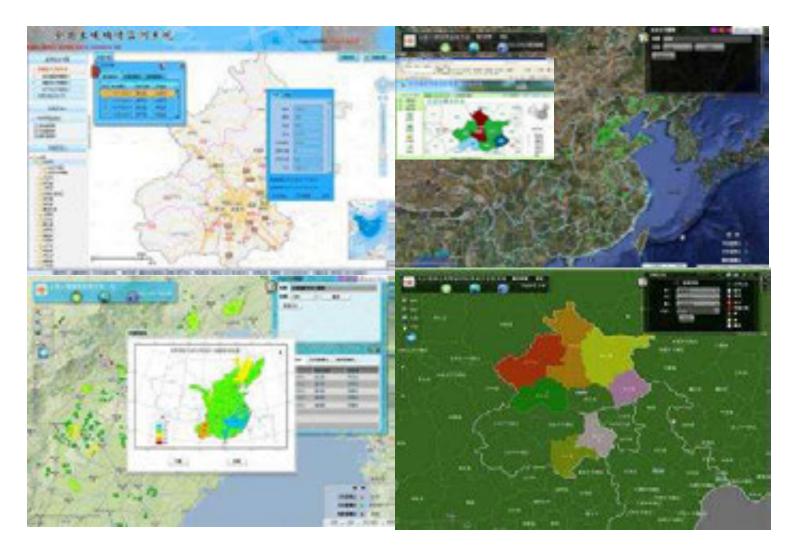

Plant pathogen detection

Patent: ZL201010178307.2³⁰

(2) Monitoring inside and outside environment of the facilities

NERCITA has developed ten types greenhouse sensors

- Technologies: drift suppressing, nonlinearity compensation
- Advantages: precision, stable, consistent
- Practical use: information acquisition in greenhouse


Soil moisture monitoring

Integrated station

Indicators	Functions
Soil info	Four channel of soil temperature, soil moisture and eight channel for other sensors.
Weather parameters	Air temperature, relative humidity, wind velocity, wind direction, solar radiation, atmosphere, rainfall, ET
Display	LCD touch screen
Communication	GPRS, GSM, WAN
Protocol	Standard MODBUS
Data storage	20000 rows
Programming	Online programming
Transfer method	At different interval, called by cell phone

Web specific map and short message services

Agricultural soil moisture disclose and service software

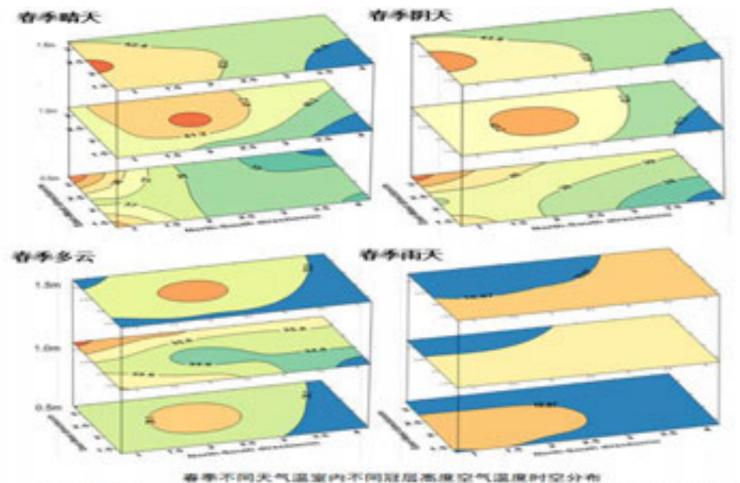
农业部办公厅文件

主点击[2010]40 号

农业部办公厅关于做好上琥珀情 监测工作的通知

各省、自治区,直部市出业(在板)厅(委,局),积罐生产建设共同 非业用;

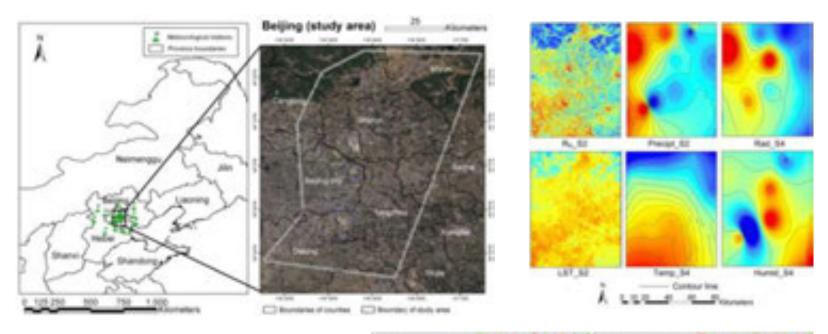
此年来,我派早又照繁史乐,受欠罪犯不影扩大,下半昧木已 成为粮余粮定增产,农业可持粮宽属的重果制的需要。 作属土壤 特情监测,要强增势变化资况,员农业抗早减欠,信导农民科学课 服,应用业证字水就水的智能和基础。 为达一开放好土壤销售监 新工巧,更好地致条寸农业生产,现得有关事项竭知和下;

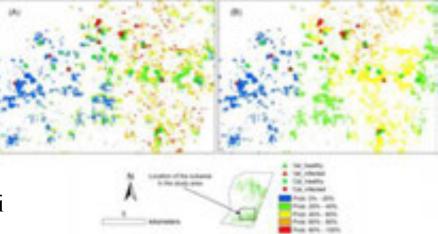

一、充分认识主编销情监测工作的重要意义

我就是世界上水资源最为原纳的部家之一,人向水资源占有 2000 方左右,仅方世界平向水平的28%。通道以来,我国早只

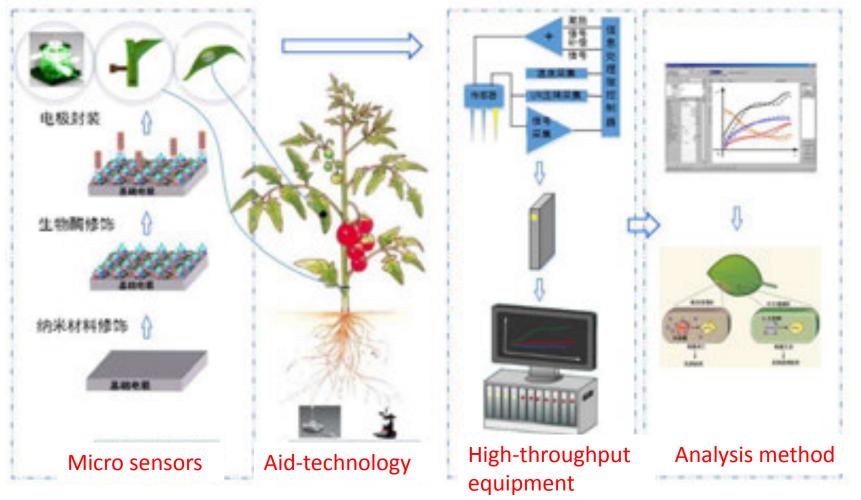
•The system has got the funding of 800 million RMB from MOA since 2012

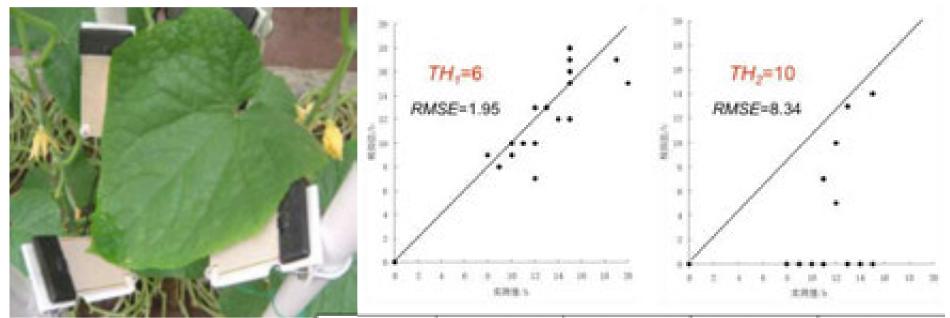
Time-space distribution of greenhouse environment



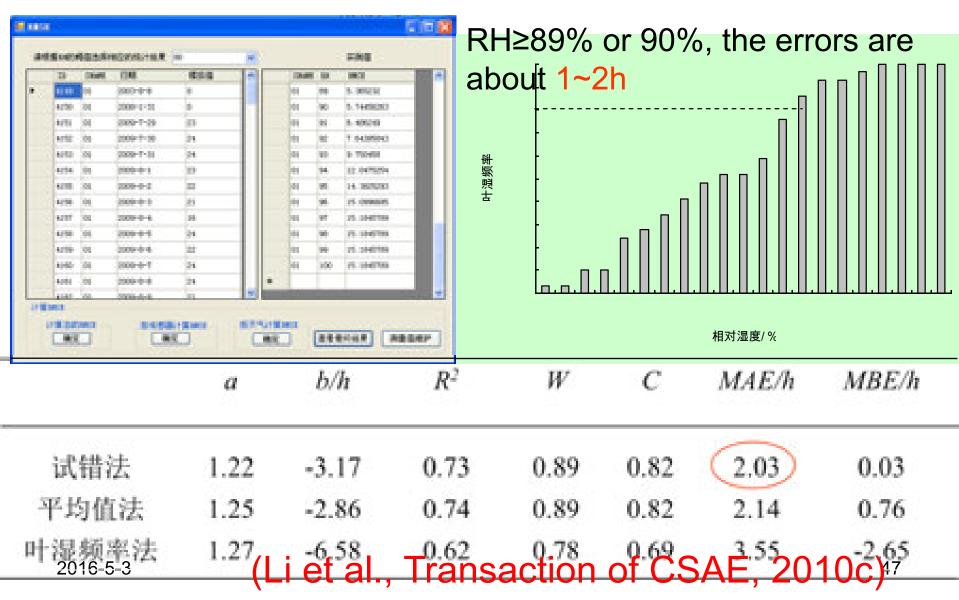

weather spring

Environment monitoring combing remote sensing

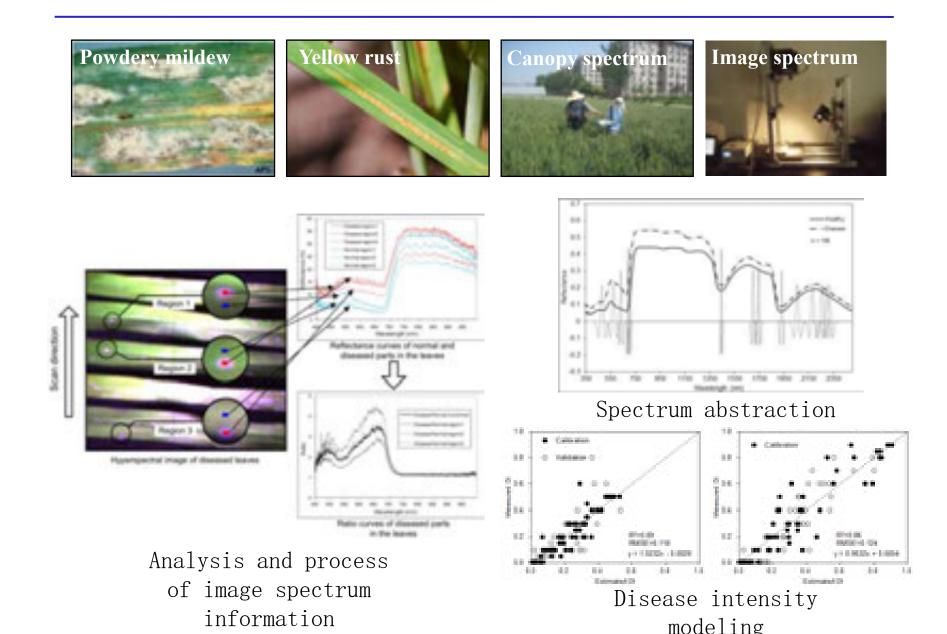

and meteorology information


- Vegetarian status variables:TVI, SAVI, DSWI, SIWSI
- Farm environment variables:
 Land surface temperature (LST)
 Temperature, rainfall, humidity, radiation

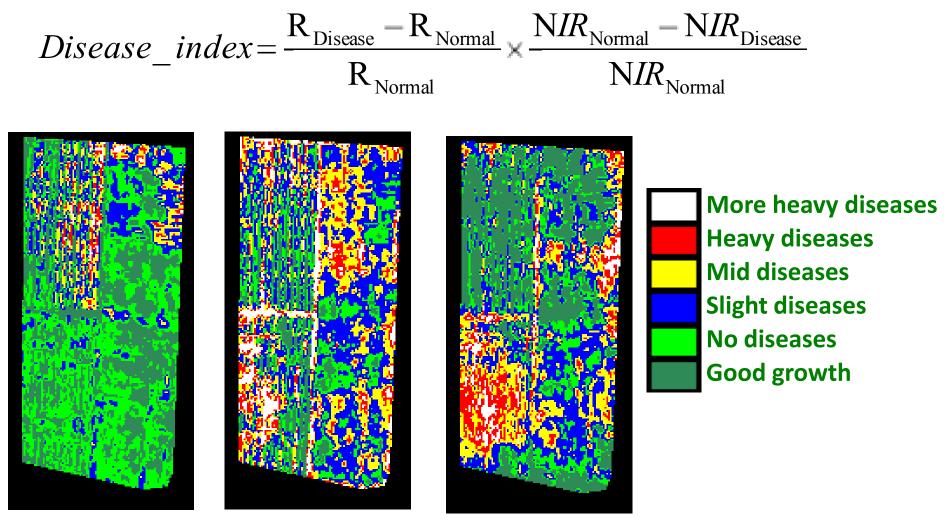
(3) Host phenotyping: Hyperspectral, Highthroughput, online

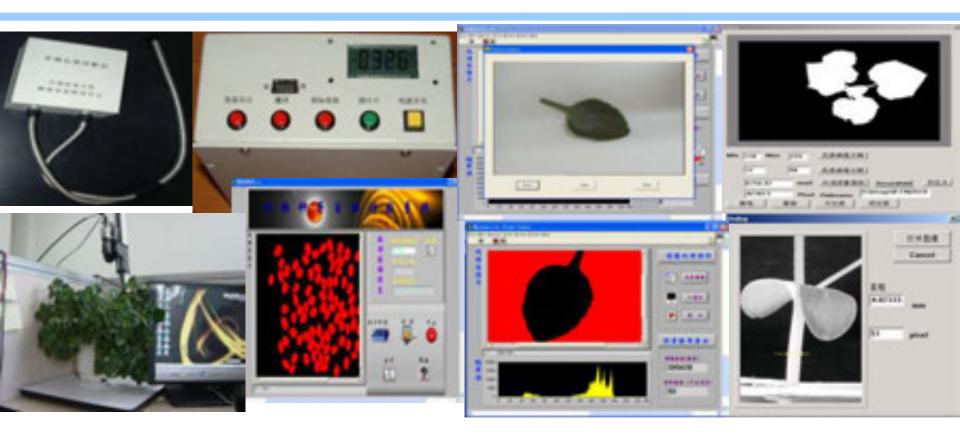


The calibration method for leaf wetness sensors



	叶片部位	准确率 F_c	灵敏度 C_{si}	误报率 F_{AR}	偏差率 B_s
	左侧叶缘	0.75	0.25	0.36	0.46
	右侧叶缘	0.79	0.23	0.16	0.29
	叶尖	0.83	0.28	0.15	0.35
	叶背面	0.63	0.13	0.48	0.29
(Li æteal., Transactio	on of CS	SA ≣7₀20	100)2	0.08	0.14


The estimation model based on RH


Crop disease spectrum characteristics and info abstraction

Crop disease monitoring

PHI image spectrum based disease index monitoring in different stages

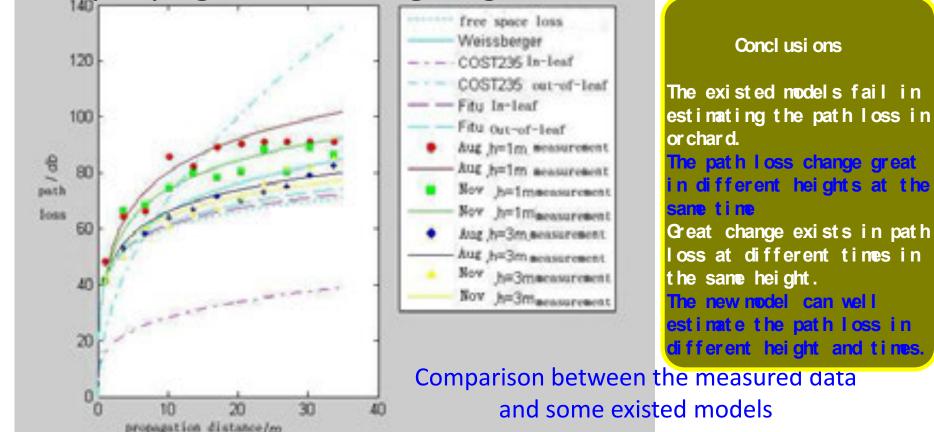
NERCITA has developed five crop information analysis systems

With machine vision and Hyperspectral technologies, we have realized non-damage detection for greenhouse crop nutrition, growth diagnosis, main agricultural parameters.

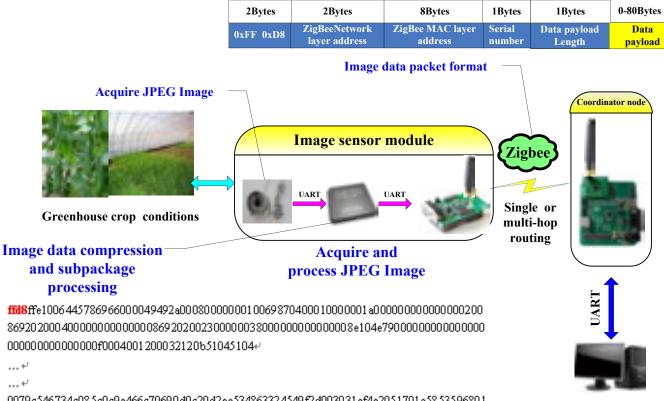
UAV in application

(4)Portable agricultural record keeping system

Production record keeping system


Bisease_early_	G % € 12:	12 😵	🎥 Early Warning 🔟 🖬 📢 12.12 😣	nesticide Us	age 🔟 🎢 🕂 🗄 16:19 🙁		
Field ID	03605		Warning	Field ID:	003605		
Cultivar	Jingyan mini	No.2	Warning	Damage Level:	Low -		
Primary inoculum	Yes	*	Cucumber downy mildew early warning!	Pesticide Type:	Fungicide *		
Transplanting date	2008-02-05		The predicted Infection date	Pesticide Name:	Chiorothaionil -		
The latest irrigation c	ate 2008-0	4-14	-	Martin			
Sky in daytime	Overcast	*	is 2008-4-14.	<u> </u>	•		
Sky in nightime			Warning obviation treatment:	Cl The pesticide application is proper			
Daily mean temp("C)	13.5		The ventilation in time is				
Daily mean RH(%)	92		required The Chlorothalonil smoke	Usage Date:	08-4-16 •		
Daily range of temp(1	C) 4		could be used.				
Save Ea	arly warning		OK Quat	OK	Quit		

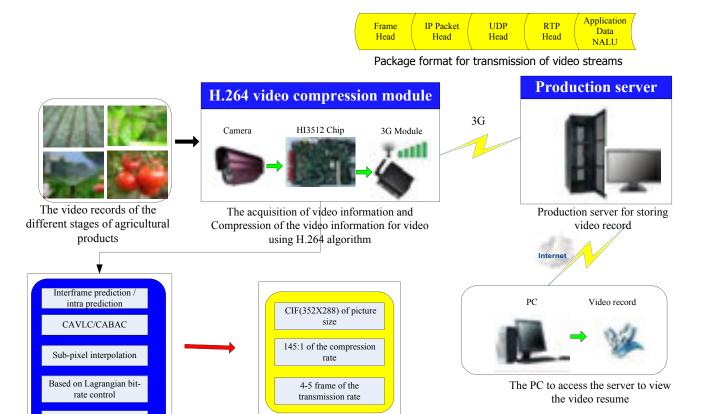
Field image monitoring


(5) Wireless Sensor Network application

- Research on characteristics of radio
 - propagation through agricultural environment

(5) Wireless Sensor Network application

 ZigBee-based wireless sensor network image transmission technology



0079c546734c085c0c9a466c70690d0c20d2ee534863324549f2d003031ef4e2051701a5853596801 b29063938cfc8dc7e14d7076be0e0ed3fca9a5a8e3a347fffd9+

Monitoring platform

(5) Wireless Sensor Network application

• H.264 video compression technology

Compression result

H.264 compression technology

Deblocking filtering

3.3 Model establishment

Field experiment

Beijing Xiedao Co, Itd

two greenhouses

ALL COLOR DINGS

Xiaotangshan base for precision agriculture 2006.10-2007.1, three greenhouses 2007.2-now, three greenhouses

lingyan mini No.2

- The second

The substrate used was a

mixture of peat and vermiculite

2:1

Beijing academy of agricultural and forestry sciences (BAAFS 2008.9-2009.1, one greenhouses 2009.3-2009.12, one greenhouses

Clarifying the meaning of warning

• These warnings would include disease occurrence (yes or no) and its probability.

Table 1

Categories and a summary of calculation results of the early warning model for primary infection of cucumber downy mildew in solar greenhouses (EWMPICDW) in each day.

N	Estimated – Yes	Estimated - No
Observed - Yes	Hits (X)	Misses (Y)
Observed - No	False alarms (S)	Correct negatives (Z)

Forecasting the warning situation

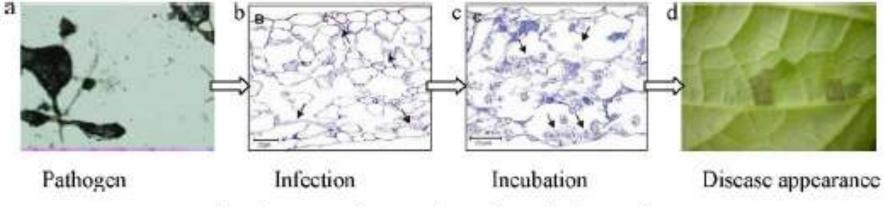
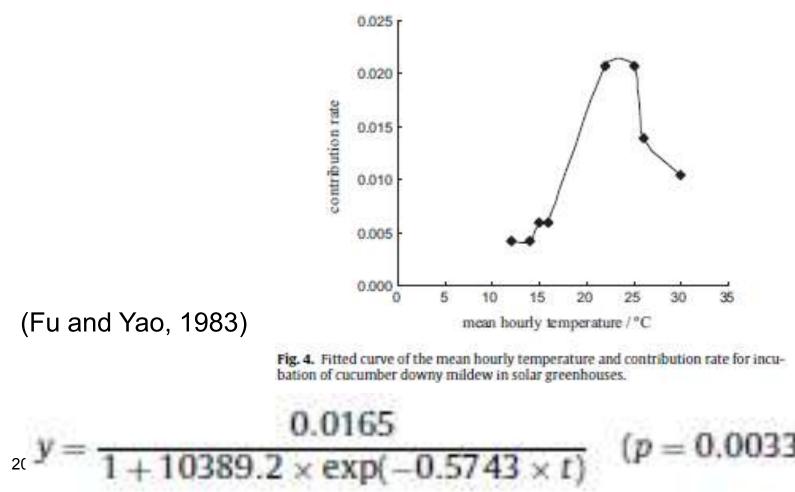


Fig. 3. The primary infection mechanism of cucumber downy mildew.

(Lindenthal et al., 2005)


Infection condition early warning sub model

- LWD × TLWD \ge 40 h °C (LWD \le 2h,

5 °C ≤ TLWD ≤ 30 °C) (Cohen, 1977)

Forecasting the warning situation

Incubation period early warning sub model

Validation by 4-year data

Disease investigation results in Xiaotangshan and BAAPS.

Table 2

Vear	Point	Predicted infection date	Predicted occurrence date	Observed occurrence date	Year	Point	Predicted infection date	Predicted occurrence date	Observed occurrence date
Sainta	ngshan	1.000			BAAFS	6.089			
2006	14	21-October	26-October	26-October	2008	310	N	N	N
2005	2*	21-October	26-October	26-October	2006	324	N	N	N
2006	34	21-October	26-October	26-October	2008	335	N	N	N
2006	-44	21-October	26-October	26-October	2008	344	30-October	4-November	21-November
2006	5*	21-October	26-October	26-October	2008	35	2-December	10-December	20-November
2006	64	21-October	26-October	26-October	2008	354	13-November	17-November	20-November
2006	72	21-October	26-October	26-October	2008	374	12-November	17-November	16-November
2005	8.	21-October	26-October	26-October	2008	38'	2-December	9-December	16-November
2006	24	21-October	25-October	26-October	2008	39	25-November	1-December	14 November
2006	104	21-October	26-October	26-October	2008	404	11-November	16-November	16-November
2006	11.	21-October	26-October	26-October	2006	414	12-November	17-November	15-November
2005	124	21-October	26-October	26-October	2008	42'	N	N	14-November
2005	1.34	21-October	25-October	27-October	2008	43 ^b	N	N	N
2005	1.4"	21-October	26-October	26-October	2008	44	11-November	16-November	14-November
2005	154	21-October	26-October	26-October	2008	45#	11-November	15-November	15-November
2007	162	13-February	21-February	24-February	2009	46*	16-April	20-April	19-April
2007	174	21-February	7-March	24-February	2009	47%	N	N	N
2007	184	bis-February	24-February	24-rebruary	2009	48*	N	21	74
2007	2.94	15-February	24-February	26-February	2009	494	16-April	20-April	19-April
2007	204	16-February	26-Pebruary	24-Pebruary	2009	500	N	N	N
2007	21"	16-February	24-February	24-February	2009	501	N	N	20-April
2007	224	14 February	21-February	24-February	2009	528	N	N	N
2007	234	16-February	24-February	26-February	2009	532	N	N	N
2007	244	13-February	21-February	24-February	2009	54 ^r	24	N	20-April
2007	254	16-February	23-February	24-February	2009	5.55	N	N	20-April
2007	269	N*	N	N	2009	567	N	N	N
2007	27 ^h	N	N	N	2009	57%	N	N	N
2007	288	N	N	N	2009	580	N	N	N
2007	2.97	N	N	N	2009	597	N	N	N
2007	30%	N	N	N	2009	60%	N	N	N

4 The predicted infection date or predicted occurrence date was earlier than the observed occurrence date.

* The cucumber downy mildew did not appear, and the model did not present early warning (true negative points, TNP).

1 The model did not present infection and occurrence early warning before the observed occurrence date,

⁴ The predicted infection date was earlier than the observed occurrence date, but predicted occurrence date was later than the observed occurrence date.

* N denoted no predicted infection, predicted disease occurrence or observed disease occurrence,

Model evaluation

Table 4

Rayesian analysis of early warning results of the early warning model for primary infection of cocumber downy mildew in solar greenhouses (EWMINCOW)

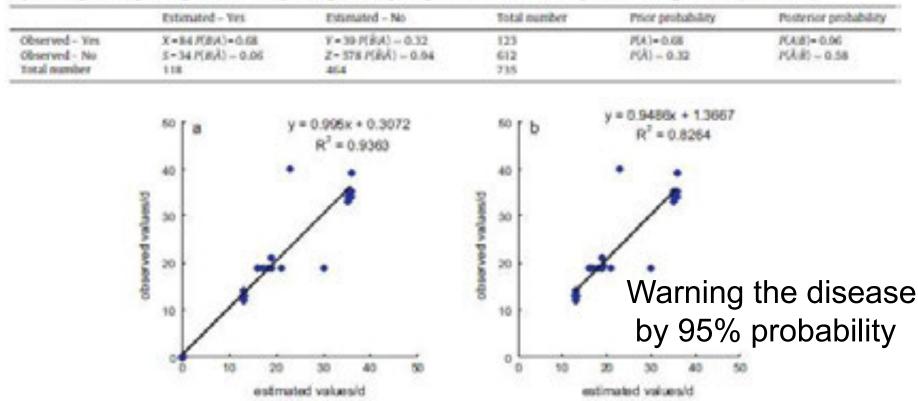


Fig. 5. Comparison of the occurrence date between observed values and estimated values under the early warning model for primary infection of cucumber downy mildews in solar greenhouses (EWMPICEW).

(Zhao et al., Computers and Electronics in Agriculture2011)

3.4 Decision and conducting

Early warning system application

黄瓜霜霉病预警模型

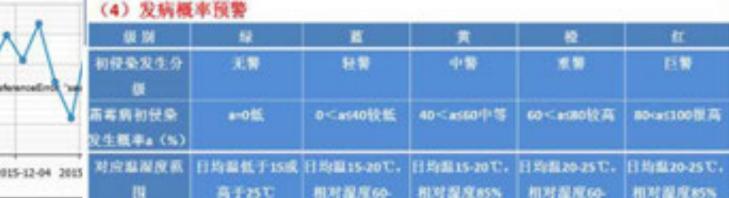
(1) 菌源条件

2.81

如果溫室前茬种植过黄瓜或发生过黄瓜霜霉病,或者附近温室或露地发生黄 瓜霜霉病,就具备菌源条件。

(2) 初侵柴预警

计算每天的叶片漫调时间,叶片湿润时间的获得,采用每天超过93%的相对 湿度的小时数作为估计,计算叶片湿润时间内的平均温度。


LWD*TLWD240 (LWD22, 5sTLWD530)

式中:LWD--叶片湿润时间,h;TLWD--叶片湿润时间内的平均温度, C,满足上述条件,需霉病菌就可能侵染。

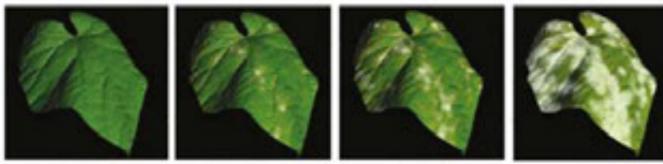
(3) 潜育别/发病日期预警

此后开始启动每小时平均温度t与潜育期贡献率y的模型公式。当y累计达到1, , 潜育期结束, 式中: y---潜育期贡献率, 无量纲; t--每小时的平均温度, , 0.0165

 $y = \frac{1}{1+10389.2 \cdot \exp(-0.5743 \cdot t)}$

Visual simulating appearance of plant leaves infected by disease and insect pests

4. 责任内销组 a. Pewdery milden of cocomber



16. 最下自接场 b. Powdery milden of eggplant 用了 家拜城富丽像 Fig.7 Actual plant disease images.

小室叶锦城 c. Wheat leaf mut

本文算法可通过病情调节参数 a. 进而控制病 情指数, 进行定量化的病情模拟, 图 8 为不同病情 指数下白粉病表观模拟(D₈=0.44, P₁=0.47),与 图 7a 进行对比可知,本文方法在病贸分布、需尼 表观等方面均符合实际病菌的特征。

A GROEDER a. Discussi-indica in 9

医毛筋的肌肉的 8. Disease rades in 7

4.运动设备36 a. Descent index in T.

4 化作品用4回 d. Discourrindes to 4

II: Dur0.44, Py+0.47

不同编售指数下的景态自转码编段表现 **PR 8**

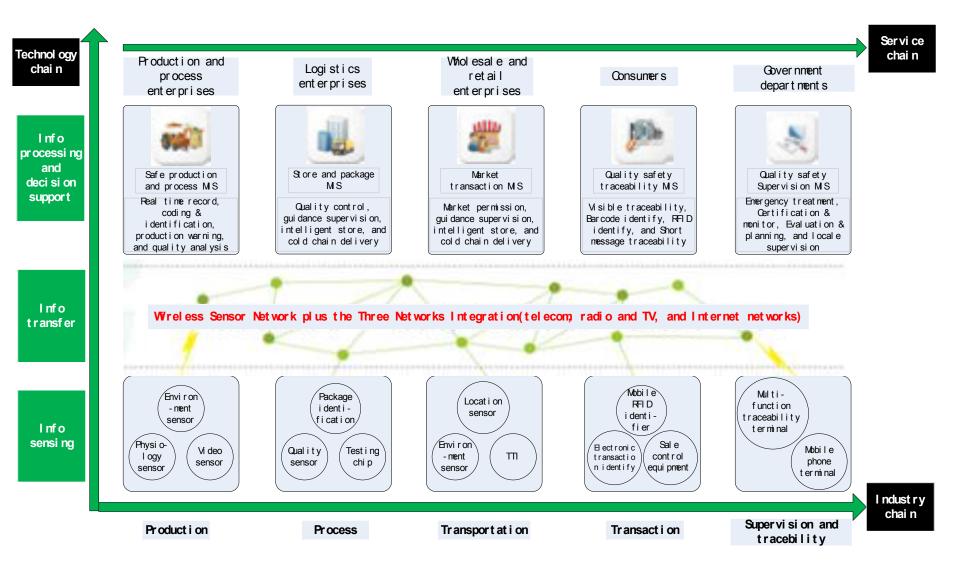
Fig.8 Appearance of powdery mildew of cucumber of different disease indexes

Miao et al, 2014

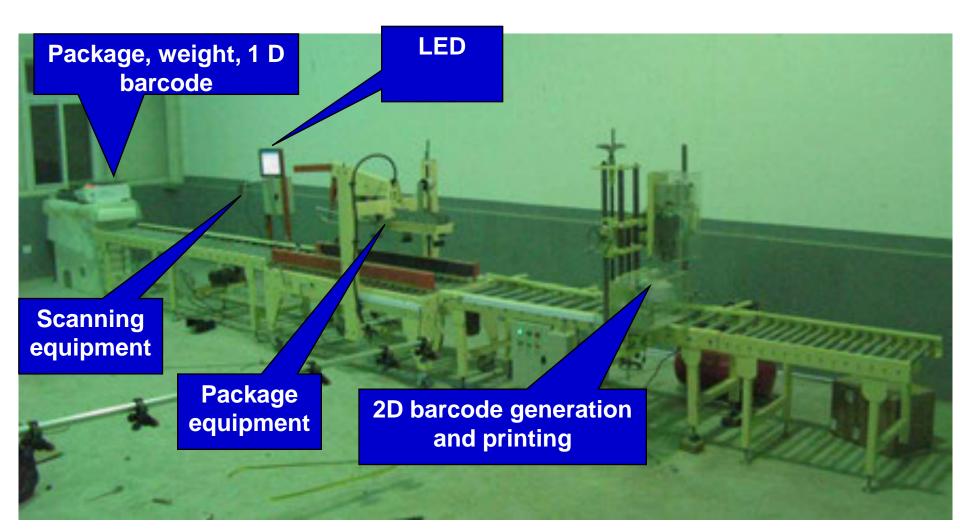
Potato late blight warning system

Spraying machine

Robot for spraying

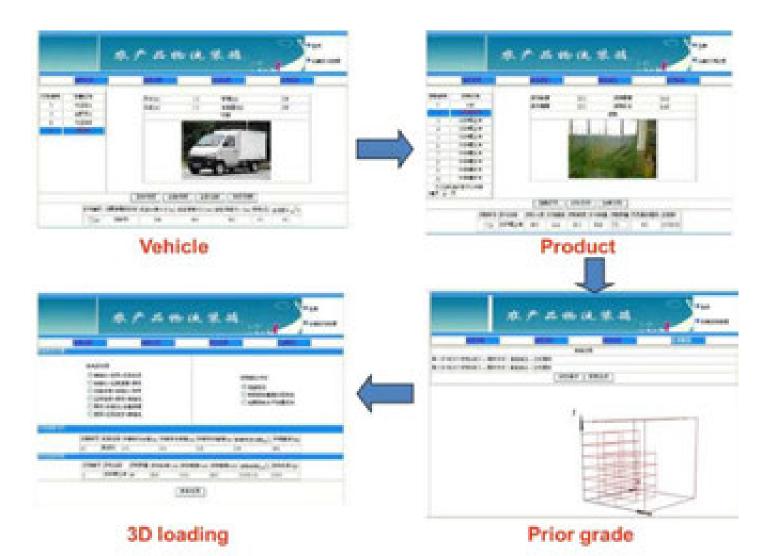

Robot platform for multispan greenhouses

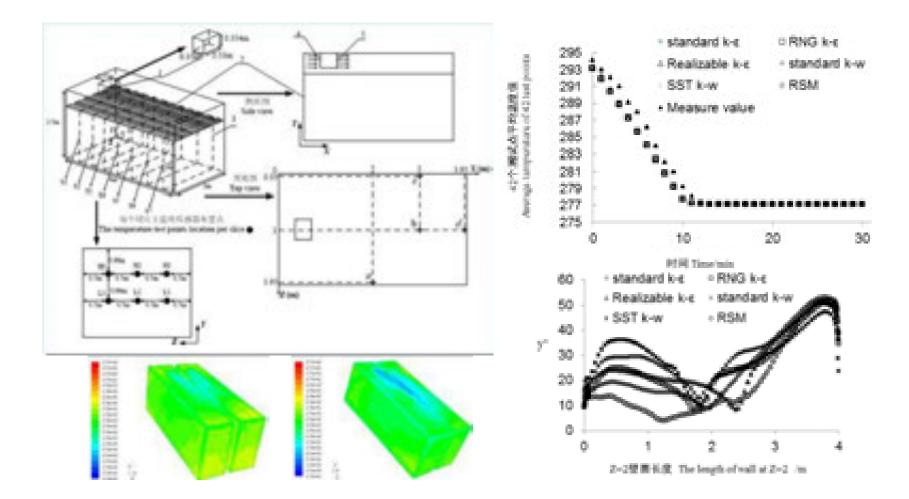
Remote Spay robot for solar greenhouses


Variable rate spraying system based on machine vision

This kind of sensor-based variable rate sprayer can find weeds on-line in the field automatically, so where is weeds where is spraying.

4. Logistics


Auto packaging line for agricultural products


Logistics management system

Logistics loading and 3D display

Temperature dynamic modeling in cold chain

Transaction management

• Electronic scale for traceability using barcode

Туре	Portable	Pillar base	weigh-bridge		
Max scope	30Kg	300Kg	1t or individual size		
Division value	10g	20g	0.1kg		
Main functions	Weighting, location, 2D barcode printing and data wireless transfer				
Characteristics	RFID identification	Multi-form of barcode	IPC control and touch screen		
		printing			
Applied scene	High-level agri-product,	Cooperatives or whole	Cooperatives or whole sale		
	cooperative with direct package	sale market with mid-	market with big amount		
	in field	amount			

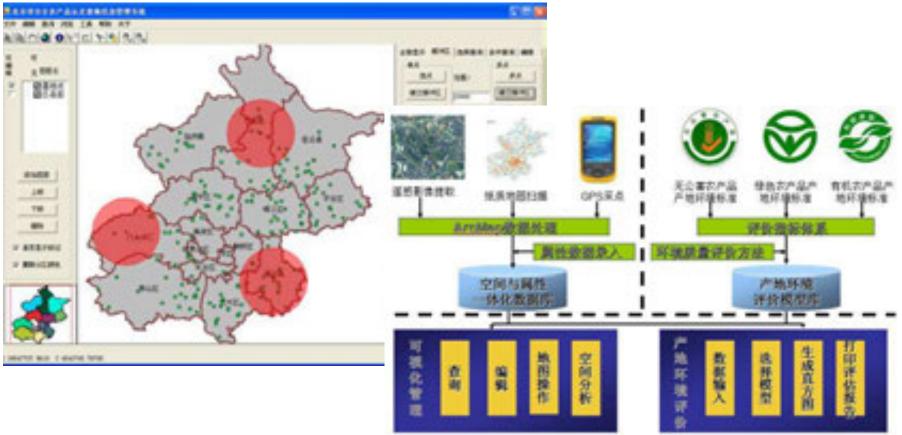
Transaction management

Transaction management system

Quality traceability-website

Quality traceability-cell phone

• Support Android, IOS with 1D and 2D barcode



Quality traceability-touch screen

Government supervision

• Environment evaluation systems for agricultural production field

Government supervision

 Supervision platform for agricultural product quality safety

TRADE R	电电影型上共参数	THERING .	20421244
8.7E	107101	1000	1947
WART.	0700	1.000	6.1
REE	14000	10.0	-
Carlo:	(mane)	100	
**12	812	100	105
682	18100	88	*1
10.0	17964	1944	4-11
ARE	100	(A)	
art:		D.a.	
	205.0	1 4 mm	1000

5. Application

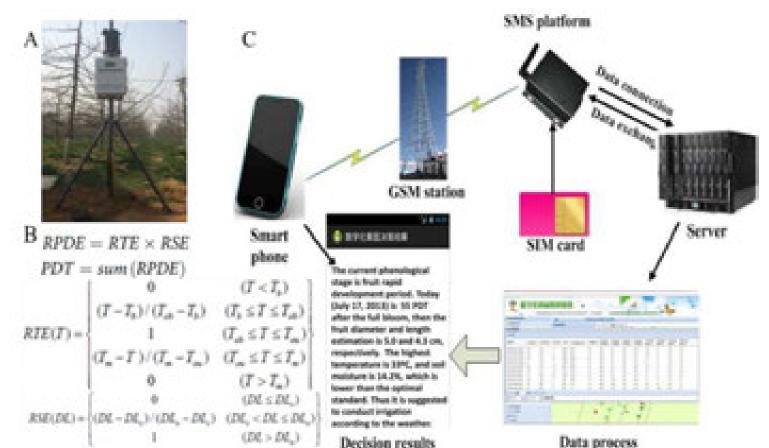
• Applied in more than 10 provinces with 254

Application-typical cases

Vegetable quality safety management and traceability in Tianjin

Tianjin case

Cooperated with Tianjin Pollution-Free Agri-Products (Crop Planting) Management Center 2012-2015: 30000 ha nonpollution vegetable bases (total vegetable area is 90000 ha in Tianjin, with 70000 ha in greenhouses, 7.5 billion RMB); 260 million tons, 57% of total vegetable supply for Tianjin; Establish the supervision system from Municipal, county, town to enterprise; More than 5 million production record in the platform, to support the reduction of 19 million RMB


Training in Tianjin

Applied in Tianjin vegetable traceability for supermarket

Application-typical cases

 Digital orchard management and DSS in Shandong province

Application-typical cases

 The sturgeon caviar processing traceability for the first class food of *lufthansa*

Application for livestock products

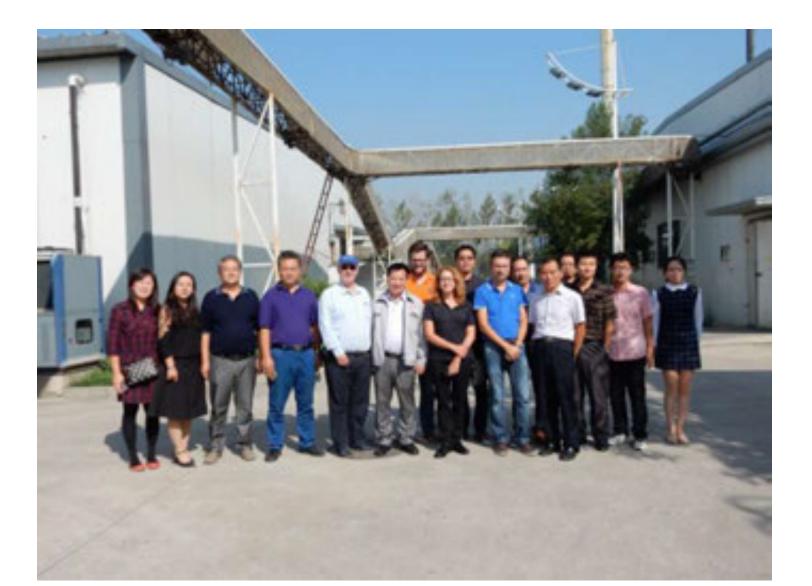
化利源肉牛适调系统介绍

CREATEDERRY, E'BYTYDANESSATHA NY, NAMEAN, MNEA, NYAN, NYAN, AN NY, NA, NG, NY, NAMESYARA, ARAA MILARAFALANI, CHRYTHARASAN ANDRAFALANIS, AND ARTHURA, NEBA 7472742501871 194428 2.5428 1.8528

Beef traceability in Binzhou, Shandong province

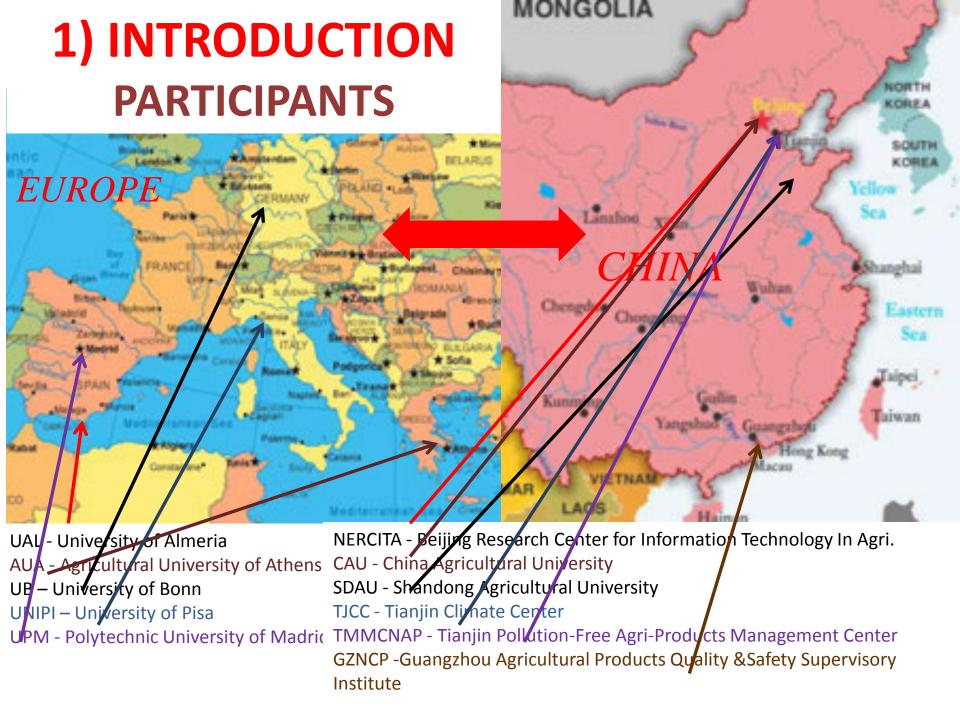
每年時山市時度时以口电(被扣除 他叫 事言双) 送口。山市省田煤品建筑发音署 个物期间的生产业活动管理系统、实现了的生从余期,生产加工、改造到银杏业计型的 监督、管理及产品安全可编码, 经一步们开了应该产等高端市场。

该系统的最优使用实现了由于整个产生缺的全级基础管理。建高了午内品质和产品 安全。在整体上操作了加估均平产业但含化管理未平。



Application-typical cases

• Agri-product traceability for the whole supply chain of field to community model


6. Cooperation with Spain

INTRODUCTION of TEAP (PIRSES-GA-2013-612659)

- A Traceability and Early warning system for supply chain of Agricultural Product: complementarities between EU and China" (TEAP)
- -Marie Curie Actions \rightarrow Mobility
- IRSES → International Research Staff Exchange Scheme
- Objectives of the program:
 - Exchange/sharing of "actual" knowledge
 Foster collaboration between institutions
 Analyzing possible collaborations
 Preparing further research projects.

It is a Mobility action!! \rightarrow Sharing/Improving actual knowledge.

2) OBJECTIVES

Specific – Thematic Objectives

- Share knowledge about four main lines:

- 1.Good Agricultural Practices and Quality Standards in application;
- 2.Alert programs in the production and disease warning models;
- 3.HACCP software in the logistics;
- 4. Traceability systems for the supply chain of agricultural products "seed-to-plate".

2) OBJECTIVES

General – Final Objectives

- Improve future collaboration between partners:
- A.Preparing new research common projects, such as Horizon 2020 Work Programme
- B.Developing thematic networks with the participation of both sides;
- C.Supporting long time expertise exchange.

3) STRUCTURE

- Work Packages:

Work packag e n°	Work package title	Coordinators	Start month	End month
1	Agricultural Products Quality and Safety Standards in application.	NERCITA / AUA+UAL	11-2013	09-2014
2	The optimum techniques of environment, fertilizer, water management for horticulture	AUA+UNIPI / CAU + SDAU	11-2013	07-2014
3	Early detection of pathogens and pests: molecular, serological and conventional techniques.	UB / NERCITA + CAU	09-2014	02-2015
4	Integrated Production and alert programs.	UAL / TJCC+ GZNCP	09-2015	05-2016
5	HACCP system in the fresh agri-product logistics for quality safety control.	UPM+AUA/ NERCITA	02-2015	08-2015
6	Traceability Systems in EU and China.	CAU+NERCITA/ AUA	06-2016	09-2016
7	Common challenges in AP quality. Proposal of joint research activities	NERCITA /UAL	09-2016	08-2017

TEAP kick-off meeting, 2013

Study on greenhouse environment modeling and disease warning

- Cooperation and write a paper "Development of Air Temperature Model for Chinese and Spanish Traditional Greenhouses" to IJABE.
- Prof. Xue and Li were invited for Jorge's thesis defensing meeting. Ms. Wang Hui has been enrolled as the PhD candidate of computer major in ARM group of UAL.

Study on cold chain logistics

- Cooperated with Prof. Luis Ruiz García, Departamento de Ingeniería Agroforestal, UPM, and write two papers:
- 1) Artificial Neural Networks and thermal image for temperature prediction in apples. Food and Bioprocess Technology
- 2) CFD simulation of airflow and heat transfer during forcedair precooling of individual apples. International Journal of <u>Refrigeration</u>

101

Study on agri-product supply chain

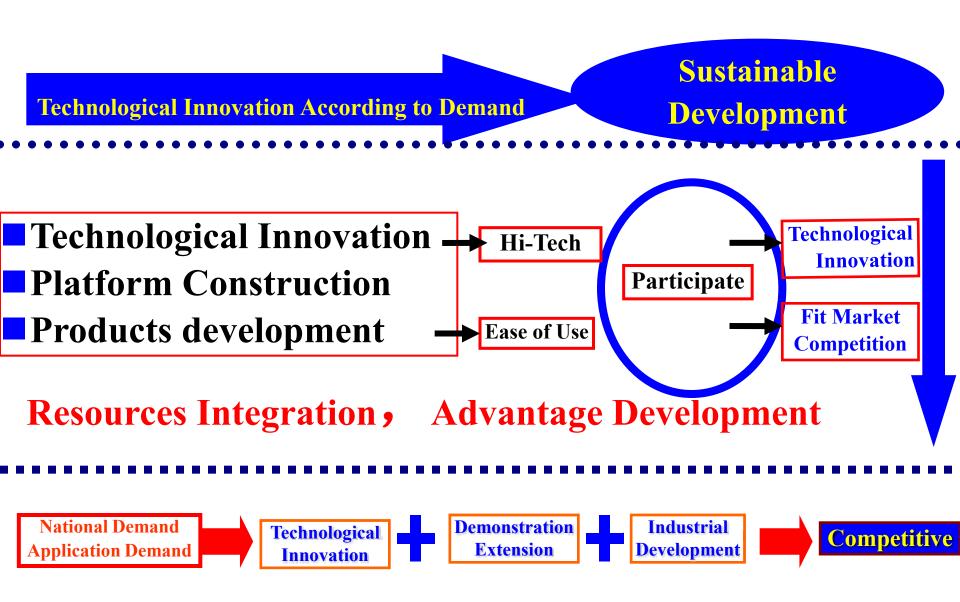
 Cooperated with Fernando Bienvenido of UAL, Cynthia Giagnocavo from Coexphal/UAL, Pedro Hoyos Echevarría of UPM

Some visits

National Engineering Research Center for Information Technology in Agriculture

NER

Departments


15 Research Dept. and 6 Administration Dept.:

- Software Engineering
- Information Engineering
- Cartoon and Animation Design
- Intelligent System
- Environment Resources
- Remote Sensing (RS)
- Logistic Information

- Intelligent Equipment
- Agricultural Automation
- Precision Agriculture
- Biological Equipment
- Strategy Research
- Digital Farming
- Intelligent Testing
- Agricultural Aviation

- Administration Division
- Program and finance Division
- Sci-Tech Management Division
- International Cooperation Division
- Achievement Transfer
- Experimental Station
- One enterprise: Beijing Paid Weiye Science and Technology Co.
 Itd
- **One base:** Xiaotangshan National Precision Agriculture
- **Research and Demonstration Base**
- •One Academic Society: Beijing Society of Agricultural Informatization

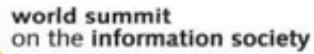
Development Strategies

Human Resources

- Research Team: 408 in total, 119 regular staff, 161 employed by enterprise, 128 Master and Doctor students with Post-doctor
- Titles: 16 investigators , 26 associate investigators, 5 senior engineers;
 80% with Master and Doctor degree, 100 Doctors
- Team:硕/博导13人;863专家1人;千人计划1人;国务院津贴3人;国家百千万1人,农业部杰出人才及创新团队1人,北京百名领军人才1人,北京百千万5人;北京突贡2人,北京新星25人,北京优青4人,北京优秀人才22人,农科院青年基金14人。
- Major: Computer/Electronics/Automation/Mechanical equipment:40%, Agriculture: 30%, researchers combined with computer and agricultural sciences: 30%

Status

- Planning and design of ICT in agriculture for Ministry of Agriculture, Ministry of Science and Technology, Ministry of Industry and Information
- Team leader organization for agricultural application of national standard working group for internet of things
- National consulting expert for rural informatilization
- National high-tech program expert


Research achievement and effects

- •More than 80 Invention patents, 137 practical models patents; more than 600 software registrations80;
- Published more than 1203 papers indexed by SCI/EI
- •22 S&T awards with more than provincial level, with 3 national awards
- Extension to 30 provinces with economic benefit of 1 billion yuan

•3 national and 1 international awards

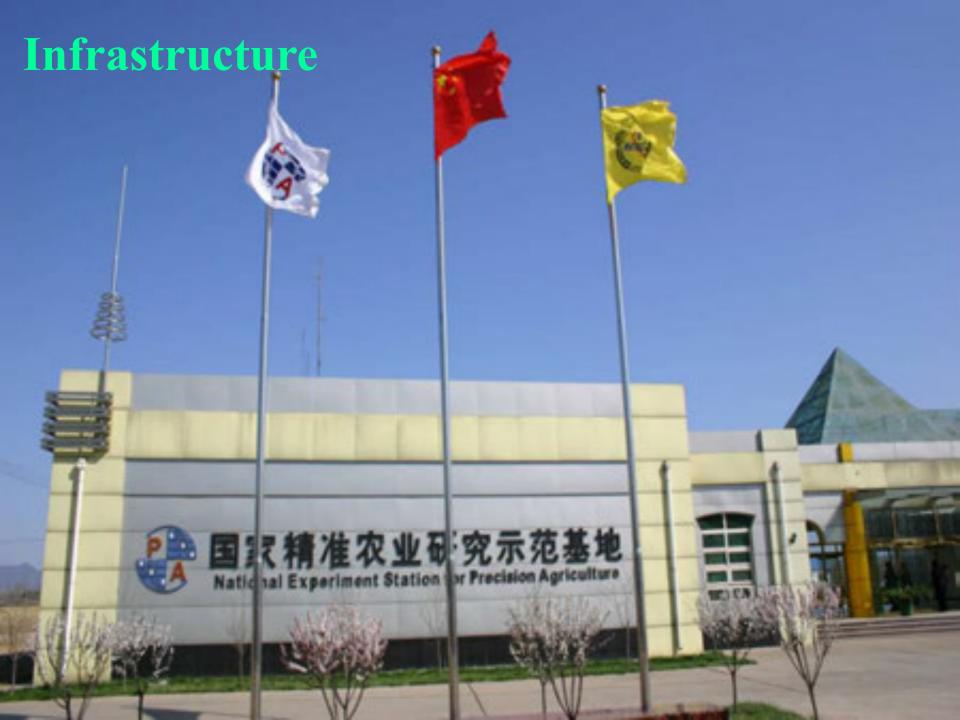
Geneva 2003 - Tunis 2005

Awand

CERTIFICATE

World Summit Award 03 BEST CONTENT

Product Agricultural Expert System in China


Company

China National Engineering Research Center for Information Technology Category

WSA,WSIS,UN,2003

Characteristic of Sons Official Society of Society Without States of Society of Society of States of the Society of Socie Jah Bearing BA, MCH. Clarks of Barrets Adams's Water Statement Research of Chrysterson

e-Science

Xiaotangshan base: window

•National Experimental Station for Precision Agriculture

Laboratory with 1050M²

Equipments

170 hp Tractor

Disk Harrow

Maize Harvester with Sensors

Conbine Harvester

16 Greenhouses

17.14:13

Farm Machine Warehouse with 1130M²

Further work

- 1) Cooperation in the model and system in different area of ICT in agriculture.
- 2) Supply chain management of agri-products
- 3) Apply the research in the practices.
- 4) Future research project.

